Abstract
Stable tissue phantoms that incorporate the spectral absorption properties of hemoglobin would benefit a wide range of biophotonic technologies. Toward this end, we have developed and validated a novel polymer material incorporating hemoglobin. Our solid hemoglobin-polymer (SHP) material is fabricated by mixing liquid silicone base with a hemoglobin solution, followed by sonication and low temperature curing. The optical properties of samples were determined over 450-1000 nm using the inverse adding-doubling method and the Beer-Lambert law. Measurements indicated SHP optical stability over four months. Near-infrared spectroscopy and hyperspectral imaging measurements of SHP samples were performed to demonstrate the utility of this approach. SHP materials have the potential to improve tissue-simulating phantoms used for development, evaluation, and standardization of optical devices for oximetry and other applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.