Abstract

Ceramics powders based on cerate-zirconate such as yttrium-doped barium cerate-zirconate, BaCe0.54Zr0.36Y0.1O3 (BCZY) have been used as electrolyte materials for proton-conducting fuel cell (PCFC) application. High purity of the ceramics powders are traditionally prepared by solid state reaction (SSR) method at a high processing temperature (> 1400 °C). Alternatively, sol-gel (SG) technique and high pressure – high temperature (HP-HT) batch wise reactor system using supercritical fluids (SCFs) method are introduced to synthesis the powders at a lower temperature. To achieve the goals in producing the ceramics powders with better properties than SSR method, few critical parameters for both SG and SG assisted SCFs methods are determined. This study reports the effects of different chemical agents (chelating agent and surfactant) in SG method and the effects of pressure and temperature of HP-HT batch wise reactor system using ethanol as solvent on the phase purity and microstructure of the BCZY powders. Chelating agent (triethylenetetramine, TETA) and surfactant (Brij-97) aided to produce a single perovskite phase of BCZY at calcination temperatures of 1100 °C and 950 °C, respectively. On the other hand, a single perovskite phase of BCZY was obtained via SCFs assisted with sol-gel (SG-SCFs) method. The optimum characteristics of BCZY powder was found in the one prepared at P = 2 MPa and T = 150 °C and 200 °C. Particles of the powders produced by SG and SG-SCFs methods are spherical in-shape. As proven, SG method is able to produce better phase purity and homogenize BCZY powder at lower processing temperature that meets criteria to be used as an electrolyte material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call