Abstract
Nanocrystalline arrays of Ni2+ substituted Mg–Zn spinel ferrite having a generic formula Mg0.7−xNixZn0.3Fe2O4 (x=0.0, 0.2, 0.4 and 0.6) were successfully synthesized by sol–gel auto-combustion technique. The fuel used in the synthesis process was citric acid and the metal nitrate-to-citric acid ratio was taken as 1:3. The phase, crystal structure and morphology of Mg–Ni–Zn ferrites were investigated by X-ray diffraction, scanning electron microscopy, and Fourier transformer infrared spectroscopy techniques. The lattice constant, crystallite size, porosity and cation distribution were determined from the X-ray diffraction data method. The FTIR spectroscopy is used to deduce the structural investigation and redistribution of cations between octahedral and tetrahedral sites of Mg–Ni–Zn spinel structured material. Morphological investigation suggests the formation of grain growth as the Ni2+ content x increases. The saturation magnetization and magneton number were determined from hysteresis loop technique. The saturation magnetization increases with increasing Ni2+ concentration ‘x’ in Mg–Zn ferrite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.