Abstract

A computational parametric study on the solder joint reliability of a plastic ball grid array (PBGA) with solder bumped flip chip (FC) is presented. The basic configuration of the PBGA is 27mm package‐size and 1.27mm ball‐pitch. There were three kinds of ball population: four‐row perimeter grid array with/without thermal balls, and full grid array. A total number of 24 cases, involving various chip sizes, chip thicknesses and substrate thicknesses, were studied. The diagonal cross‐section of the PBGA‐printed circuit board (PCB) assembly was modeled by plane‐strain elements and was subjected to uniform thermal loading. Through mismatch of coefficient of thermal expansion (CTE), and lack of structural compliance, the solder joints were stressed to produce inelastic deformation. The accumulated effective plastic strain was evaluated as an index for the reliability of solder joints. The present study revealed the effects of aforementioned design parameters on the solder joint reliability of FC‐PBGA assemblies. Some peculiar phenomena were identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.