Abstract
This paper presents a non‐linear numerical study to investigate the effect of chip dimension and substrate thickness on the solder joint reliability of plastic ball grid array (PBGA) packages. The package under investigation was a 225‐pin full‐grid PBGA assembly. The diagonal cross‐section of the PBGA together with the printed circuit board (PCB) was modelled by plane‐strain elements. A uniform thermal loading was applied and the solder joints were stressed due to the mismatch of coefficient of thermal expansion (CTE) and constructions of the PCB assembly. The effective stress and accumulated plastic strain of solder balls against various chip dimensions and substrate thicknesses were evaluated as an index for the reliability of solder joints. The results of this study are helpful for electronics packaging engineers to optimise the geometry of plastic ball grid array packages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.