Abstract

Solar energy is accessible throughout the year in tropical regions. The latest development of absorption chillers has demonstrated that these systems are suitable for effective use of solar energy. The utilisation of solar energy for heat-driven cooling systems has significant advantages. Without a doubt, solar energy represents a clean energy source that is available without any additional fuel cost, and that can be proportionally accessible when the cooling load increases during the middle hours of the day. This study focuses on a single-double-effect absorption chiller machine that was installed in Indonesia. The system is driven by a dual-heat source that combines gas and solar energy. This system is characterised by simulating its performance in various conditions in terms of the cooling water (28–34 °C) and the hot water (75–90 °C) inlet temperatures. The reference operating condition of this system is 239 kW of cooling capacity. The mathematical model is validated and shows a good agreement with experimental data. In the operative range considered, simulation results yield a coefficient of performance between 1.4 and 3.3, and a gas reduction ratio from 7 to 58% when compared to a double-effect absorption chiller driven by gas. Based on the simulation results, this system is expected to have a good potential for widespread use in tropical Asia regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.