Abstract

Counterstreaming beams of electrons are ubiquitous in coronal mass ejections (CMEs) - although their existence is not unanimously accepted as a necessary and/or sufficient signature of these events. We continue the investigations of a high-latitude CME registered by the \emph{Ulysses} spacecraft on January 18\,--\,19, 2002 (Dumitrache, Popescu, and Oncica, Solar Phys. {\bf 272}, 137, 2011), by surveying the solar wind electron distributions associated with this event. The temporal-evolution of the pitch-angle distributions reveal populations of electrons distinguishable through their anisotropy, with clear signatures of i) electron strahls, ii) counter-streaming in the magnetic clouds and their precursors, and iii) unidirectional in the fast wind preceding the CME. The analysis of the counter-streams inside the CME allows us to elucidate the complexity of the magnetic-cloud structures embeded in the CME and to refine the borders of the event. Identifying such strahls in CMEs, which preserve properties of the low $\beta < 1$ coronal plasma, gives more support to the hypothesis that these populations are remnants of the hot coronal electrons that escape from the electrostatic potential of the Sun into the heliosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.