Abstract

AbstractUsing Boltzmann–Vlasov kinetic model, a currentless ion acoustic instability driven by stream of solar wind plasma is studied in a non‐thermal distributed electrons and ions. The non‐thermal distribution considered here is the generalized distribution which has low energetic flat‐top and velocity power law tail at higher energies. The instability threshold is found to be affected and depends upon the spectral indices r and q. It is found that the growth rate increases with the decrease in the value of r and increase with q. Moreover, such kinetic instability has also been discussed for three species electron–ion–dust plasma using the generalized (r, q) distribution function. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust and excites electrostatic instabilities. The dispersion properties and growth rates for ion‐acoustic and dust‐acoustic mode are calculated analytically and plotted for different values of the spectral indices r and q.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.