Abstract
Abstract Temperatures between 25 and 86 km measured by the Microwave Limb Sounder (MLS) experiment on the Upper Atmosphere Research Satellite (UARS) are analyzed to delineate diurnal, semidiurnal, and terdiurnal tidal structures and stationary planetary waves. These Fourier components are determined from temperatures averaged in bins covering 5° latitude, 30° longitude and 1 h in local time. This study confirms the presence of diurnal nonmigrating tides with zonal wavenumbers s = 0, 2, −3 [s > 0 (s < 0) implying westward (eastward) propagation] and semidiurnal tides with s = 1 and 3, and some components of lesser importance that were previously determined from UARS wind measurements near 95 km. The seasonal–latitudinal and height structures of these components are now revealed, and utilized to aid in interpreting their behaviors and ascertaining their origins. New discoveries include the terdiurnal s = 2 and s = 4 components, and trapped nonmigrating diurnal tides with s = 0 and s = 2. The former are likely to arise from nonlinear interaction between the migrating (s = 3) terdiurnal tide and the stationary planetary wave with s = 1. The latter may reflect the presence of a longitude-dependent in situ heat source, or in situ nonlinear interaction between the migrating diurnal tide and a stationary planetary wave with s = 1. The present results provide a rich mixture of observational results to challenge both mechanistic and general circulation models of the middle atmosphere. In addition, internal consistency is established between the MLS tidal temperatures at 86 km and previously derived tidal winds at 95 km within the context of tidal theory. This result represents one step in the validation of measurements required for successful application of data-model assimilation techniques to the mesosphere and lower thermosphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.