Abstract

The TMT Project is completing the design of a telescope with a primary mirror diameter of 30 m, yielding ten times more light gathering power than the largest current telescopes. It is being designed from the outset as a system that will deliver diffraction-limited resolution (8, 15 and 70 milliarcsec at 1.2, 2.2 and 10 microns, respectively) and high Strehl ratios over a 30 arcsecond science field with good performance over a 2 arcmin field. Studies of a representative suite of instruments that span a very large discovery space in wavelength (0.3–30 microns), spatial resolution, spectral resolution and field-of-view demonstrate their feasibility and their tremendous scientific potential. Of particular interest for solar system research, one of these will be IRIS (Infrared Imaging Spectrometer), a NIR instrument consisting of a diffraction-limited imager and an integral-field spectrometer. IRIS will be able to investigate structures with dimensions of only a few tens of kilometers at the distance of Jupiter. Two other instruments, NIRES and MIRES (Near- and Mid IR Echelle Spectrographs) will enable high angular, high spectral resolution observations of solar system objects from the ground with sensitivities comparable to space-based missions. The TMT system is being designed for extremely efficient operation including the ability to rapidly switch to observations with different instruments to take advantage of “targets-of-opportunity” or changing conditions. Thus TMT will provide capabilities that will enable very significant solar system science and be highly synergistic with JWST, ALMA and other planned astronomy missions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call