Abstract

As a renewable source, solar energy has received more and more attention in recent years. Solar energy can readily provide heat efficiently within the temperature range of 70–100°C. For the utilization of this energy source, a cascading cycle was designed and was discussed. An organic Rankine cycle (ORC) and an adsorption refrigeration cycle were combined to provide the first- and second-stage energy conversion cycle, respectively. In the analysis, R600 was used as the working fluid for the ORC and a silica gel–water working pair was analyzed for the adsorption refrigeration cycle. The energy efficiency for electrical generation and refrigeration, as well as the exergy efficiency of the cascading cycle, was assessed. For an environmental temperature of 30°C and a refrigeration temperature of 12°C, the results showed that typically 1 kW of electricity and 6.3 kW of refrigeration could be generated from approximately 15 kW heating power. The electricity generation efficiency was between 0.1 and 0.15, while the refrigeration coefficient of performance was approximately 0.8. The exergy efficiency was found to be between 0.84 and 0.89 and between 0.32 and 0.46 for the single ORC and adsorption refrigeration cycle, respectively. The overall exergy efficiency was between 0.56 and 0.74.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.