Abstract

In this paper, energy and exergy analyses of a trigeneration system based on an organic Rankine cycle (ORC) and a biomass combustor are presented. This trigeneration system consists of a biomass combustor to provide heat input to the ORC, an ORC for power production, a single-effect absorption chiller for cooling process and a heat exchanger for heating process. The system is designed to produce around 500 kW of electricity. In this study, four cases are considered, namely, electrical-power, cooling-cogeneration, heating-cogeneration and trigeneration cases. The effects of changing ORC pump inlet temperature and turbine inlet pressure on different key parameters have been examined to evaluate the performance of the trigeneration system. These parameters are energy and exergy efficiencies, electrical to cooling ratio and electrical to heating ratio. Moreover, exergy destruction analysis is presented to show the main sources of exergy destruction and the contribution of each source to the exergy destruction. The study shows that there are significant improvements in energy and exergy efficiencies when trigeneration is used as compared to electrical power. The results show that the maximum efficiencies for the cases considered in this study are as follows: 14.0% for electrical power, 17.0% for cooling cogeneration, 87.0% for heating cogeneration and 89.0% for trigeneration. On other hand, the maximum exergy efficiency of the ORC is 13.0% while the maximum exergy efficiency of the trigeneration system is 28.0%. In addition, this study reveals that the main sources of exergy destruction are the biomass combustor and ORC evaporator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.