Abstract
Solar array panels of a satellite must be locked at an intended position in order to perform its mission successfully as the electric power source of a satellite. To deploy the solar panels completely, it is necessary to design the deployment mechanism which has high precision and reliability. Consequently, the dadaists on the dynamic characteristic of the deployment mechanism must be done at an initial design stage. Moreover, various the mission of a satellite has made the size of solar panels got bigger, so elastic effect has to be considered seriously to get more practical and precise analysis. In this paper, the dynamic analysis methods to predict solar panels' deployment motions are proposed. First, the method of evaluating the dynamic property of solar panels' deployment mechanism using SEH (Strain Energy Hinge) that has nonlinear buckling property is presented. Second, the analysis procedure for the multibody dynamic system with redundant constraints is also proposed. Therefore, these two proposed methods are applied to the analysis of the solar panel deployment. In addition, the reliability of proposed methods is verified by experiments.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have