Abstract

The Super-Kamiokande (SK) and the Sudbury Neutrino Observatory (SNO) experiments are monitoring the flux of B solar neutrinos through the electron energy spectrum from the reactions nu_{e,mu,tau} + e --> nu_{e,mu,tau} + e and nu_e + d --> p + p + e, respectively. We show that the SK detector response to B neutrinos in each bin of the electron energy spectrum (above 8 MeV) can be approximated, with good accuracy, by the SNO detector response in an appropriate electron energy range (above 5.1 MeV). For instance, the SK response in the bin [10,10.5] MeV is reproduced (``equalized'') within 2 percent by the SNO response in the range [7.1,11.75] MeV. As a consequence, in the presence of active neutrino oscillations, the SK and SNO event rates in the corresponding energy ranges turn out to be linearly related, for any functional form of the oscillation probability. Such equalization is not spoiled by the possible contribution of hep neutrinos (within current phenomenological limits). In perspective, when the SK and the SNO spectra will both be measured with high accuracy, the SK-SNO equalization can be used to determine the absolute B neutrino flux, and to cross-check the (non)observation of spectral deviations in SK and SNO. At present, as an exercise, we use the equalization to ``predict'' the SNO energy spectrum, on the basis of the current SK data. Finally, we briefly discuss some modifications or limitations of our results in the case of sterile neutrino oscillations and of relatively large Earth matter effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.