Abstract
The degradation of bisphenol-A (BPA), an endocrine disrupting compound, by means of photoelectrocatalytic (PEC), photocatalytic (PC) and electrochemical oxidation (EO) was investigated. An immobilized TiO2/ITO film, prepared by a sol–gel method, served as the photocatalyst and the anode, while boron-doped diamond (BDD) as the cathode. Photochemical reactions were induced by simulated solar radiation, while anodic bias in the range 0.04–0.32mA/cm2 was applied to evaluate its effect on PC degradation, as well as the extent of direct EO. Experiments were conducted at initial BPA concentrations between 100 and 300μg/L, solution pH between 1 and 9 and two different electrolytes, i.e. HClO4 and NaCl.Current application always improved substantially the performance of photocatalytic degradation with the extent of enhancement (computed from the pseudo-first order kinetic constants of PEC and PC) reaching values as high as 90%. The interaction between PC and EO was found to be synergistic rather than additive; this is thought to be due to (i) a more efficient separation of the photogenerated electrons and holes, and (ii) the enhanced formation of peroxide and other reactive oxygen species favored on the BDD cathode.BPA degradation rates generally increased with increasing applied current, at strongly acidic conditions and in the presence of NaCl as the supporting electrolyte; at the conditions in question, complete BPA conversion could be achieved in no longer than 60–90min of reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.