Abstract

The experiments were commenced in March 2003 and repeated in June 2003 at Sutton Bonington Campus, the University of Nottingham, UK, to investigate the effect of irradiance on plant growth and volatile oil content and composition in plants of basil. Four levels of irradiance were provided in the glasshouse, i.e. no shade (control), 25, 50 and 75% glasshouse irradiance. It suggested that basil grows well in full sun, however it can tolerate light shade. Heavy shading (75%) to provide a light integral of 5.3 moles m −2 d −1 resulted in shorter plants, lower weight, smaller leaf area, less shoots and higher specific leaf area, and also strongly reduced the rate of photosynthesis. There was no difference in CO 2 assimilation rate between 24.9 moles m −2 d −1 light integrals (no shading) and 13.5 moles m −2 d −1 light integrals (25% shading). Shading effectively reduced leaf temperature when air temperature was less than 30 °C, but heavy shading (75%) could not reduce leaf temperature when air temperature was above 36 °C due to a limitation of free air convection. Consequently, leaf temperature increased. Heavy shading strongly reduced total volatile oil content in fresh leaves, especially in older plants (shading treatment applied at the 3 leaf-pair growth stage). There were three chemical compounds in basil leaves, namely linalool, eugenol and methyl eugenol, influenced by the shading treatments. Linalool and eugenol, which contribute to the characteristic taste of basil, were significantly increased by high daily light integrals, whereas methyleugenol was increased by lower daily light integrals. No differences in the relative content of 1,8-cineole, one of the key aromatic compounds of Ocimum species, were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.