Abstract

The thermo-industrial human society is mainly based on fuels. Currently, societies are fully dependent on fossil fuels which cause climate change that threaten human race. Solar fuels are well suited technologies to face these challenges. Long-term solar energy storage based on chemical fuel production from water (and potentially CO2) has a significant importance to decarbonize our societies. Artificial photosynthesis is especially adapted to produce solar fuels, such as hydrogen, methane, ethanol, etc. This study focuses on hydrogen production. Water splitting with photolysis reaction is possible thanks to photocatalysts that absorb light and produce hydrogen. Modeling the hydrogen production is based on 3 main physics fields because the process is limited and controlled by radiative transfer. Electromagnetism is used to determine radiative properties. Then, radiative transfer allows to calculate photon absorption rates. Finally, the thermokinetic coupling law establishes a relation between photon absorption rate and hydrogen production rate. Experimentally, hydrogen production is operated in a dedi-cated laboratory-scale benchmark photoreactor. Photon flux density is controlled by a LED panel and hydrogen pressure variation is monitored with a pressure sensor. It is then possible to calculate experimental hydrogen production rates. The model predicts a non-linear thermo-kinetic coupling law, which fits well experimental results. Consequently, we demonstrated that the concept of incident solar flux density dilution is an important feature for process optimiza-tion. Several dilution technologies from TRL 3 to 5 are implemented in our laboratory thanks to the new PAVIN solar platform. They aim to validate high-efficiency technologies thanks to solar flux dilution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call