Abstract

The large-scale utilization of solar energy will be facilitated by economical and efficient energy storage. The proposed energy storage systems have been critically reviewed, and capital cost estimates compared on a common basis. A model for sizing an energy storage system is proposed and used to determine the size range of practical interest. Based on selection criteria and relevant data two storage systems have been investigated: an all sodium system and a molten salt system. The design equations, cost estimates, and correlations indicate that, for the energy storage systems developed to date, in the capacity range of 700–2100 MWh, a molten salt, two-tank isolated-type system is the most cost effective and technically feasible for a solar, central receiver, hybrid cogeneration plant. At the extremes of the above range the unit capital cost for the molten salt storage system was found to be 22.8–26.7 $/kWh of stored energy, compared to 43.0–45.4 $/kWh for the sodium storage system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.