Abstract

Decarbonization of electrical power generation is an essential necessity in the reduction of carbon emissions, mitigating climate change and attaining sustainable development. Solar energy as a substitution for fossil fuel-based energy sources has the potential to aid in realizing this sustainable future. This research performs a geographic information systems (GIS)-based assessment of the solar energy potential in the Yangtze River Delta region (YRDR) of China using high-resolution solar radiation data combined with geographical, social, environmental and cultural constraints data. The solar energy potential is evaluated from the geographical and technical perspective, and the results reveal that the YRDR is endowed with rich solar energy resources, with the geographical potential in the suitable areas ranging from 1446 kWh/m2 to 1658 kWh/m2. It is also estimated that the maximum solar capacity potential could be up to 4140.5 GW, illustrating the high potential available for future capacity development in this region. Realizing this significant potential as an alternative for fossil fuel-based electricity generation would result in a substantial mitigation of CO2 emissions in this region, where air pollution is severe. Potential evaluations found that Jiangsu and Anhui provinces provide the most optimal areas for the development of solar photovoltaics (PV) installations, as they have the highest geographical and technological solar energy potential. Further, findings of the case study undertaken at a solar PV plant show disparities between actual generated power and technical solar potential, highlighting the significance of utilizing solar radiation data from local ground-based meteorological stations. This study provides policy makers and potential investors with information on solar energy potential in the Yangtze River Delta region that would contribute to solar power generation development.

Highlights

  • Air pollution and environmental degradation is set to increase due to continued utilization of fossil fuel-based energy sources for production of electricity [1]

  • This combined with anthropogenically induced climate change, the associated environmental crisis and the depletion of fossil fuel resources will lead to challenges in electricity supply [2,3]

  • The geospatial processes and analysis were performed on a geographic information systems (GIS) platform: Environmental Systems Research Institute (Esri) software ArcGIS

Read more

Summary

Introduction

Air pollution and environmental degradation is set to increase due to continued utilization of fossil fuel-based energy sources for production of electricity [1]. This combined with anthropogenically induced climate change, the associated environmental crisis and the depletion of fossil fuel resources will lead to challenges in electricity supply [2,3]. One of the key advantages that solar PV has over conventional fossil fuelbased power production is the ten-fold reduction in CO2 emissions from 1000 gCO2 /kWh to 90 gCO2 /kWh [1], which facilitates the critically needed de-carbonization of the global energy supply. The PV market had a growth rate of 41% between 2000 and 2015 [2]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.