Abstract

A model study of the solar eclipse induced variations in mesospheric ozone concentrations was undertaken. This study includes, in addition to the Chapman reactions, the chemistry involving hydrogen species (H, OH and HO2) which are found to be important in the destruction of odd oxygen in this altitude region. Coupled time dependent continuity equations are solved for the eclipse duration. The results from the present study are compared with earlier theoretical model and the experimental observations during the 16 February 1980 solar eclipse as well as the results obtained during earlier solar eclipses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.