Abstract
Stratospheric airships, with their long endurance, high flight altitude, and large payload capacity, show promise in earth observation and mobile internet applications. However, challenges arise due to their low flight speed, limited maneuverability and energy constraints when planning trajectories in dynamic wind fields. This paper proposes a deep reinforcement learning-based method for trajectory planning of stratospheric airships. The model considers the motion characteristics of stratospheric airships and environmental factors like wind fields and solar radiation. The soft actor-critic (SAC) algorithm is utilized to assess the effectiveness of the method in various scenarios. A comparison between time-optimized and energy-optimized trajectories reveals that time-optimized trajectories are smoother with a higher speed, while energy-optimized trajectories can save up to 10% energy by utilizing wind fields and solar energy absorption. Overall, the deep reinforcement learning approach proves effective in trajectory planning for stratospheric airships in deterministic and dynamic wind fields, offering valuable insights for flight design and optimization.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.