Abstract
Abstract. Short-term upper atmosphere variations due to magnetospheric forcing are very complex, and neither well understood nor capably modeled due to limited observations. In this paper, mass density variations from 10 years of GRACE observations (2003–2013) are isolated via the parameterization of annual, local solar time (LST), and solar cycle fluctuations using a principal component analysis (PCA) technique. The resulting residual disturbances are investigated in terms of magnetospheric drivers. The magnitude of high-frequency (δ < 10 d) disturbances reveals unexpected dependencies on the solar cycle, seasonal, and an asymmetric behavior with smaller amplitudes in June in the south polar region (SPR). This seasonal modulation might be related to the Russell–McPherron (RM) effect. Meanwhile, we find a similar pattern, although less pronounced, in the northern and equatorial regions. A possible cause of this latitudinal asymmetry might be the irregular shape of the Earth's magnetic field (with the north dip pole close to Earth's rotation axis, and the south dip pole far from that axis). After accounting for the solar cycle and seasonal dependencies by regression analysis to the magnitude of the high-frequency perturbations, the parameterization in terms of the disturbance geomagnetic storm-time index Dst shows the best correlation, whereas the geomagnetic variation Am index and merging electric field Em are the best predictors in terms of time delay. We test several mass density models, including JB2008, NRLMSISE-00, and TIEGCM, and find that they are unable to completely reproduce the seasonal and solar cycle trends found in this study, and show a clear overestimation of about 100 % during low solar activity periods.
Highlights
The connection between solar drivers and magnetosphere– ionosphere–thermosphere (MIT) phenomenon is very complex and dependent on many processes
We present a comprehensive study of thermospheric density disturbances due to magnetospheric forcing from a 10-year (2003–2013) continuous time series of Gravity Recovery and Climate Experiment (GRACE) accelerometer-based and precise orbit determination (POD)-based mass density estimates, which have been isolated from annual, local solar time (LST), and solar cycle variations via the parameterization of the principal component analysis (PCA) (Calabia and Jin, 2016)
We investigated the relationship between indices and mass density disturbances associated with magnetospheric forcing using 10 years (2003–2013) of GRACE observations, after accounting for annual, LST, and solar cycle dependencies via the parameterization of the main PCA modes
Summary
The connection between solar drivers and magnetosphere– ionosphere–thermosphere (MIT) phenomenon is very complex and dependent on many processes. We present a comprehensive study of thermospheric density disturbances due to magnetospheric forcing from a 10-year (2003–2013) continuous time series of GRACE accelerometer-based and POD-based mass density estimates, which have been isolated from annual, LST, and solar cycle variations via the parameterization of the principal component analysis (PCA) (Calabia and Jin, 2016). In this scheme, a continuous time series can provide a more realistic representation during both active and quiet magnetospheric conditions, instead of analyzing a collection of large storms.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have