Abstract

Deoxyribonucleic acid (DNA) was successfully incorporated as a nanolayer between the bottom indium tin oxide (ITO) transparent electrode and the photoabsorbing film in a polymer solar cell. Upon film optimization and analyses with scanning tunneling spectroscopy/currents, we demonstrate that a 1–6 nm thick DNA stratum functions as an effective electron-extracting layer, leading to strong improvements in rectifying behavior (by 2 orders of magnitude with rectifying ratios reached larger than 103) and in photovoltaic parameters like the open-circuit voltage (VOC from 0.39 to 0.73 V) and power conversion efficiencies (PCEs from ∼2 to ∼5%). The results show that DNA is a very ductile nanomaterial for electronic purposes, paving the way for future exploration in photovoltaic devices combining its electron-extracting properties with its functional and self-assembly behavior. Furthermore, solar cell devices were completely processed at room temperature, and DNA was cast from ecofriendly solvents such as water an...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call