Abstract

The failure of medical devices, such as bones prosthesis, is mainly due to inflammatory and infectious phenomena. Entrapping anti-inflammatory and antimicrobial agents inside the biomaterial matrix could avoid these phenomena. In this context, inorganic/organic silica (S)/polyethylene glycol (P)/caffeic acid (A) hybrid systems were synthesized via the sol-gel method with different weight percentages of P and A. Fourier-transform infrared (FT-IR) revealed that caffeic acid undergoes an oxidizing phenomenon in the sol-gel synthesis condition. Additionally, the formation of a hydroxyapatite layer on hybrid surfaces was demonstrated by employing the Kokubo test and analyzing the samples using scanning electron microscopy, X-ray diffraction, and FT-IR. Moreover, further characterization of the antimicrobial activity of the synthesized biomaterials was carried out using the Kirby–Bauer test. Finally, UV-Vis measurement was useful to evaluate the caffeic acid kinetic release in simulated body fluid (SBF) at 37 °C. The kinetic study disclosed that the hybrid materials without polyethylene glycol had faster release rates than the ones obtained without the organic polymer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.