Abstract

The effect of introduction of silica particles prepared by the sol-gel technique on the gas transport properties of a polyimide film was studied. The sorption and permeation of N 2, O 2, CO 2, H 2 and CH 4 were studied and correlated with morphological changes in the polymer structure. From sorption isotherms, we observed that the composite membrane presents higher solubility coefficients than the polyimide one. The solubility coefficient ratio between the composite and the polyimide is about 1.5–2.0. The isotherms were analyzed in terms of the dual mode sorption. The Henry's coefficient and the Langmuir's affinity and saturation constants were obtained allowing to calculate the Langmuir to Henry concentration ratios as function of the gas pressure. These ratios decrease until zero within a certain pressure range as long as the Langmuir's mode is acting and they are higher for the polyimide membrane when compared with the composite one. This study was completed with calorimetric measurements during the sorption. The gas interaction energy in kJ/mol decreases within the same pressure range as previously described. The measured energies are higher for the polyimide film when compared with the composite one because the polyimide membrane presents a stronger energetic effect caused by a higher Langmuir's contribution. From permeation studies at 3.15 5 Pa, the composite membrane showed higher permeability coefficients and permselectivities than the polyimide one. All these results were explained, taking into account the difference on the imidization degree of both membranes and the morphological changes which may be induced by the silica nodules in the organic/inorganic interphases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.