Abstract
Under some conditions, inorganic salts can be as good precursors for sol–gel-type processing as those obtained from expensive metalloorganic precursors such as alkoxides. In this work, the formation of monodispersed hydrous zirconia microsphere particles (particularly nanosized) and gels was achieved in solutions of zirconyl chloride dissolved in alcohol–water mixed solvents. The dielectric property of the mixed alcohol–water solvent directly affects the nucleation and growth of zirconia clusters/particles in homogeneous solutions. A lower dielectric constant of mixed solvent corresponds to a lower solubility of inorganic solute and, thus, a shorter induction period for nucleation as well as higher solid particle growth kinetics. Dynamic light scattering (DLS) was used to monitor the homogeneous nucleation and growth processes, while final particles and gels were studied by scanning electron microscopy (SEM) and high-temperature X-ray diffraction (HTXRD). The sol–gel processes in the mixed solvent system can be adjusted using the processing parameters, including the initial inorganic salt concentration (C), alcohol/aqueous medium volume ratio of the mixed solution (RH), incubation temperature (T), incubation time (t), concentration of hydroxypropyl cellulose (HPC), and ammonia neutralization. Monodispersed submicron and nanoscale (<100 nm) zirconia microspheres/powders were successfully synthesized under conditions of high RH (5) and using HPC (molecular weight of 100,000, 2.0×10−3 g/cm3) and ammonia neutralization. Initial salt concentration affects the particle size significantly. Gel materials were obtained under conditions of low RH (1.0). Microstructure and transparency of gels changed significantly from low (0.05 M) to high (0.2 M) concentration of the metal salt. We have also demonstrated that monodispersed particle production can be achieved not only at low temperatures (<100°C) but also at room temperature using an inorganic salt precursor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.