Abstract
AbstractCollapsible soils are almost found in unsaturated states and involved significant engineering problems. Geotechnical challenges of such soils are represented by the hydro-mechanical behaviour during wetting–drying cycles due to the humidity and climate conditions. The main objective of this paper is to investigate the soil–water characteristic curve (SWCC) of unsaturated collapsible soils. In this study, three types of collapsible soils were investigated such as natural soils of sandy gypseous, silty loess, and artificial soil of gypsum–sand mixture. Determination of soil–water characteristic curve represented by wetting and drying paths has been done using a combination of the axis-translation technique (i.e. pressure plate device) and vapour equilibrium technique (i.e. salts solution desiccators) to cover a wide range of applied suction. The test results show that the air-entry value for all soils occurs at a very low suction range. At the boundary effect zone, the coarse grain size of the soil mass cannot hold the water molecules in the pore space, even with a low value of imposed suction. Moreover, the amount of hysteresis varied based on the geological formation and homogeneity of the soil fabric. Furthermore, SWCC has been interpreted by insignificant volume change and a slight reduction in void ratio, especially at high applied suction.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have