Abstract

Soil organic carbon (C) plays a fundamental role in tropical and subtropical soil fertility, agronomic productivity, and soil health. As a tool for understand ecosystems dynamics, mathematical models such as Century have been used to assess soil's capacity to store C in different environments. However, as Century was initially developed for temperate ecosystems, several authors have hypothesized that C storage may be underestimated by Century in Oxisols. We tested the hypothesis that Century model can be parameterized for tropical soils and used to reliably estimate soil organic carbon (SOC) storage. The aim of this study was to investigate SOC storage under two soil types and three textural classes and quantify the sources and magnitude of uncertainty using the Century model. The simulation for SOC storage was efficient and the mean residue was 10MgCha−1 (13%) for n=91. However, a different simulation bias was observed for soil with <600gkg−1 of clay was 16.3MgCha−1 (18%) for n=30, and at >600gkg−1 of clay, was 4MgCha−1 (5%) for n=50, respectively. The results suggest a non-linear effect of clay and silt contents on C storage in Oxisols. All types of soil contain nearly 70% of Fe and Al oxides in the clay fraction and a regression analysis showed an increase in model bias with increase in oxides content. Consequently, inclusion of mineralogical control of SOC stabilization by Fe and Al (hydro) oxides may improve results of Century model simulations in soils with high oxides contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.