Abstract

The extracellular enzyme plays a crucial role in nitrogen (N) conversion. Soil colloid serves as an important transporter of N transport in hydrological processes. This study investigated soil colloid-mediated N loss co-transporting with soil extracellular enzymes. Five simulated rainfall experiments were conducted under four tillage treatments in a purple sloping farmland in Sichuan, China. The N concentrations, soil mineral colloids, and four carbon (C), N and phosphorus (P) acquisition extracellular enzymes (βG, AP, NAG, and LAP) in surface runoff and interflow were measured The results showed that cross-slope tillage with straw returning practices significantly reduced the concentrations of TN, PN, NH4+, and DON in surface runoff. The activities of N and P acquisition enzymes in interflow were higher than in surface runoff, while C acquisition enzymes showed the opposite trend. The BG and AP enzymes dominated in surface runoff, while AP and NAG dominated in interflow. The concentrations of fine soil mineral colloids (SMC, φ<1 μm) and coarse mineral colloids (CMC, φ>1 μm) in interflow were higher than that in surface runoff. The extracellular enzymes were found to co-transport with soil colloid migration during the hydrologic process. The involvement of colloid in extracellular enzyme migration in surface runoff was primarily due to SMC, while in interflow, it was the joint action of SMC and CMC. Surface runoff is always in N and P limits, while interflow is only in the P limits. With a SEM combined model quantitatively analysis, we found the synergistic transport of soil colloid and extracellular enzymes significantly impacted TN loss, explaining 95 % and 55 % of the differences between surface runoff and interflow N loss pathways. This emphasizes the importance of understanding the co-transport mechanism between soil colloid and extracellular enzymes in N loss processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.