Abstract

SUMMARYMineralized soil nitrogen (N) is an important source of N for grassland production. Some soils can supply large quantities of plant-available N through mineralization of soil organic matter. Grass grown on such soils require less fertilizer N applications per unit yield. A reliable, accurate and user-friendly method to account for soil N supply potential across a large diversity of soils and growing conditions is needed to improve N management and N recommendations over time. In the current study, the effectiveness of chemical N tests and soil properties to predict soil N supply for grass uptake across 30 Irish soil types varying in N supply potential was investigated under controlled environmental conditions. The Illinois soil N test (ISNT) combined with soil C : N ratio provided a good estimate of soil N supply in soils with low residual mineral N. Total oxidized N (TON) had the largest impact on grass dry matter (DM) yield and N uptake across the 30 soil types, declining in its influence in later growth periods. This reflected the high initial mineral N levels in these soils, which declined over time. In the current study, a model with ISNT-N, C : N and TON (log TON) best explained variability in grass DM yield and N uptake. All three rapid chemical soil tests could be performed routinely on field samples to provide an estimate of soil N supply prior to making N fertilizer application decisions. It can be concluded that these soil tests, through their assessment of soil N supply potential, can be effective tools for N management on grassland; however, field studies are needed to evaluate this under more diverse growing conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call