Abstract
Clay mineral isotope paleothermometry is fundamental to understanding Earth’s climate system and landscape evolution. Status quo methods, however, assume constant factors, such as formation temperature and water isotopic compositions, and ignore seasonality, soil water evaporation and depth-dependent temperature changes. We propose first-order modifications to address these factors and test them in a modeling framework using published data from various settings. Our forward model reveals that neglecting evaporation and seasonal soil temperature variability may lead to significant underestimations of clay formation temperatures, especially in Mediterranean settings. Our inverse model indicates that high-latitude Eocene clay formation temperatures were ~8 °C warmer than modern, while Eocene river sediments in the Sierra Nevada show evaporation-influenced trends, suggesting that previous paleoelevation estimates were underestimated. Our framework demonstrates that explicit consideration of soil pore water evaporation and temperature variability is necessary when interpreting clay mineral isotope data in the context of temperature, hydroclimate and elevation reconstructions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.