Abstract

Phosphorus (P) fertilization can alleviate a soil P deficiency in grassland ecosystems. Understanding plant functional traits that enhance P uptake can improve grassland management. We measured impacts of P addition on soil chemical and microbial properties, net photosynthetic rate (Pn ) and nonstructural carbohydrate concentrations ([NSC]), and root P-uptake rate (PUR), morphology, anatomy, and exudation of two dominant grass species: Leymus chinensis (C3 ) and Cleistogenes squarrosa (C4 ). For L. chinensis, PUR and Pn showed a nonlinear correlation. Growing more adventitious roots compensated for the decrease in P transport per unit root length, so that it maintained a high PUR. For C. squarrosa, PUR and Pn presented a linear correlation. Increased Pn was associated with modifications in root morphology, which further enhanced its PUR and a greater surplus of photosynthate and significantly stimulated root exudation (proxied by leaf [Mn]), which had a greater impact on rhizosheath micro-environment and microbial PLFAs. Our results present correlations between the PUR and the Pn of L. chinensis and C. squarrosa and reveal that NSC appeared to drive the modifications of root morphology and exudation; they provide more objective basis for more efficient P-input in grasslands to address the urgent problem of P deficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.