Abstract

AbstractSoil organic carbon (SOC) stock in mountain ecosystems is highly heterogeneous because of differences in soil, climate, and vegetation with elevation. Little is known about the spatial distribution and chemical composition of SOC along altitude gradients in subtropical mountain regions, and the controlling factors remain unclear. In this study, we investigated the changes in SOC stock and chemical composition along an elevation gradient (219, 405, 780, and 1268 m a.s.l.) on Lushan Mountain, subtropical China. The results suggested that SOC stocks were significantly higher at high altitude sites (1268 m) than at low altitude ones (219, 405, and 780 m), but the lower altitude sites did not differ significantly. SOC stocks correlated positively with mean annual precipitation but negatively with mean annual temperature and litter C/N ratio. The variations in SOC stocks were related mainly to decreasing temperature and increasing precipitation with altitude, which resulted in decreased litter decomposition at high altitude sites. This effect was also demonstrated by the chemical composition of SOC, which showed lower alkyl C and higher O‐alkyl C contents at high altitude sites. These results will improve the understanding of soil C dynamics and enhance predictions of the responses of mountain ecosystem to global warming under climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.