Abstract
ABSTRACT Climate change in the Arctic is predicted to drastically alter carbon and nutrient pools, plant communities, and plant–animal interactions. We examined how four levels of long-term (16 years) nutrient addition in moist acidic tundra affected plant community structure and the abundance of Eriophorum vaginatum, the preferred forage for tundra voles (Microtus oeconomus). We also explored how simulated press and pulse herbivory for four years affected Eriophorum at these different nutrient levels. Shifts in plant community structure, reductions in species diversity and richness, and decreased Eriophorum abundance were pronounced at the highest levels of nutrient addition. Eriophorum abundance was negatively correlated with deciduous shrub abundance, likely caused by light limitation in fertilized plots. Added nutrients generally increased Eriophorum leaf length, but effects varied among years and simulated herbivory treatments. After being clipped once, Eriophorum leaves regrew in fertilized plots to the same length as leaves that had not been clipped, demonstrating recovery. Our results show how interannual variation in plant growth and animal activity might exacerbate or dampen responses over multiple years. Changes to plant community composition and plant–vole interactions associated with increased soil nutrients resulting from warming could have cascading impacts on arctic ecosystems and carbon cycling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.