Abstract

Grazing plays a key role in many ecosystems worldwide and can affect the structure and composition of terrestrial plant communities. Nonetheless, how grazing management, especially grazing regime (yearlong continuous and seasonal grazing), affects the relationship between grazing and vegetation on alpine grasslands has not been extensively studied. Here, we performed a grazing experiment in Gangcha county of Qinghai province of the Qinghai-Tibetan Plateau to test the effects of different stocking rates and grazing regimes on grassland biomass and plant structure and composition. Six stocking rates (ranging from 0 to 5.62 sheep ha−1) were used for continuous grazing, and three grazing intensities (1.72, 2.87, and 5.62 sheep ha−1) were used for seasonal grazing (grazed only in the growing season, from June to October) at the study sites. Plant biomass and grass functional community composition were characterized in two different yr (2011 and 2012). Additionally, species richness and plant diversity indexes were estimated to quantify the impacts of grazing on plant community composition. Our results indicated that grazing intensity best explained the plant biomass decrease in low-productivity environments, and different grazing regimes also influenced these results. The shifts in plant community structure and composition in response to increased grazing intensity differed considerably between continuous grazing and seasonal grazing. Seasonal grazing maintained greater amounts of palatable plant species, and fewer undesirable species in plant communities when compared with the composition after continuous grazing. Our results emphasize the importance of grazing regime in regulating the effects of grazing on plant communities and the importance of seasonal grazing for ecosystem maintenance, especially in the Qinghai-Tibetan Plateau. This suggests that periodic resting of grasslands could be a good management strategy to keep palatable species, thereby minimizing undesirable species in the overall species composition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.