Abstract

This paper presents the potential for soil moisture (SM) retrieval using Sentinel-1 C-band Synthetic Aperture Radar (SAR) data acquired in Interferometric Wide Swath (IW) mode along with Land Surface Temperature (LST) estimated from analysis of LANDSAT-8 digital thermal data. In this study Sentinel-1 data acquired on 27 February 2020 was downloaded from Copernicus website and LANDSAT-8 OLI data acquired on 24 February 2020 from the website https://earthexplorer.usgs.gov/.The soil samples were collected from 70 test fields in different villages of three talukas for estimating soil moisture content using the gravimetric method. The Sentinel-1 SAR microwave data was analysed using open source tools of Sentinel Application Platform (SNAP) software for estimation of backscattering coefficient. Land surface temperature estimated using Landsat-8 thermal data. The Landsat-8, Thermal infrared sensor Band-10 data and operational land imager Band-4 and Band-5 data were used in estimating LST. The Soil Moisture Index (SMI) for all field test sites was computed using the LST values. The regression analysis using σ0VV and σ0VH polarization with soil moisture indicated that σ0VV polarization was more sensitive to soil moisture content as compared to σ0VH polarization. The multiple regression analysis using field measured soil moisture (MS %) as dependent variable, and σ0VV and SMI as independent variable was carried which resulted in the coefficient of determination (R2) of 0.788, 0.777 and 0.778 for Godhra, Goghamba and Kalol talukas, respectively. These linear regression equations were used to compute the predicted soil moisture in three talukas. The maps of spatial distribution of soil moisture in three talukas were generated using the respective regression equations of three talukas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.