Abstract
Peatlands are crucial carbon (C) sinks, and the combined activities of soil bacteria and soil abiotic properties play an essential role in regulating the C cycle. However, mountain peatlands are particularly vulnerable to global change, which could lead to a change from C sink to source. Understanding how variations in soil bacterial communities and diversity along an altitude gradient affect C storage through changes in enzyme stoichiometry ratios is essential. To address this issue, this study collected soil samples from six peatlands at different altitudes in the Changbai Mountains, China, which were dominated by either sedge or shrub/Sphagnum species. The study examined a range of soil physical and chemical properties, quantified bacterial community diversity and structure, and assessed enzyme stoichiometry. The results indicated that bacterial communities varied with altitude and vegetation, with bacterial α-diversity (richness) being higher at lower altitudes and in sedge-dominated peatlands. Mean annual air temperature (MAAT) and mean annual precipitation (MAP) were the primary drivers of bacterial diversity, and soil bacterial community composition was significantly influenced by soil carbon/phosphorus (C/P) ratio and MAP. On the other hand, soil pH had only minor effected in mountain peatlands. Path analysis emphasized the greater importance of soil moisture and microbial C limitations than bacterial richness and community on soil organic carbon (SOC) in mountain peatlands. The study also suggested that increasing bacterial richness and relative abundances of rare phyla could increase soil C concentration in peatlands. Overall, this study provided valuable insights into the regulation of C cycling in mountain peatlands and could help mitigate global climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.