Abstract

Aflatoxins (AFs) are fungal secondary metabolites frequently detected in soil that exhibit in vitro toxicity to certain soil microorganisms. However, microbial responses at different levels and in complex systems such as the soil environment have not been systematically studied. Therefore, we investigated multiple microbial responses in two different soils (sandy loam and clay) to aflatoxin B1 (AFB1) at environmentally relevant concentrations (0.5–500 µg kg−1) during a 28-day incubation. General microbial parameters for biomass (microbial biomass carbon and ergosterol), activity (glucose-induced and basal respiration), and catabolic functionality (substrate utilization patterns) were assessed. We observed minor and transient effects in both soils. In sandy loam, we found negative effects on activity and catabolic functionality with increased metabolic quotient, while clay soil exhibited stimulation for the same parameters, suggesting a hormetic effect due to reduced bioavailability through sorption onto clay minerals. Our results indicate that AFB1 does not pose a threat to general microbial indicators under the test conditions in soils without previous AF contamination. Given the toxic potential of AFs to specific microorganisms, further studies should investigate responses at higher taxonomic and functional levels in natural environments of aflatoxigenic fungi, such as tropical soils, and including additional physicochemical stressors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.