Abstract
BackgroundPlants have evolved intimate interactions with soil microbes for a range of beneficial functions including nutrient acquisition, pathogen resistance and stress tolerance. Further understanding of this system is a promising way to advance sustainable agriculture by exploiting the versatile benefits offered by the plant microbiome. The rhizosphere is the interface between plant and soil, and functions as the first step of plant defense and root microbiome recruitment. It features a specialized microbial community, intensive microbe-plant and microbe-microbe interactions, and complex signal communication. To decipher the rhizosphere microbiome assembly of soybean (Glycine max), we comprehensively characterized the soybean rhizosphere microbial community using 16S rRNA gene sequencing and evaluated the structuring influence from both host genotype and soil source.ResultsComparison of the soybean rhizosphere to bulk soil revealed significantly different microbiome composition, microbe-microbe interactions and metabolic capacity. Soil type and soybean genotype cooperatively modulated microbiome assembly with soil type predominantly shaping rhizosphere microbiome assembly while host genotype slightly tuned this recruitment process. The undomesticated progenitor species, Glycine soja, had higher rhizosphere diversity in both soil types tested in comparison to the domesticated soybean genotypes. Rhizobium, Novosphingobium, Phenylobacterium, Streptomyces, Nocardioides, etc. were robustly enriched in soybean rhizosphere irrespective of the soil tested. Co-occurrence network analysis revealed dominant soil type effects and genotype specific preferences for key microbe-microbe interactions. Functional prediction results demonstrated converged metabolic capacity in the soybean rhizosphere between soil types and among genotypes, with pathways related to xenobiotic degradation, plant-microbe interactions and nutrient transport being greatly enriched in the rhizosphere.ConclusionThis comprehensive comparison of the soybean microbiome between soil types and genotypes expands our understanding of rhizosphere microbe assembly in general and provides foundational information for soybean as a legume crop for this assembly process. The cooperative modulating role of the soil type and host genotype emphasizes the importance of integrated consideration of soil condition and plant genetic variability for future development and application of synthetic microbiomes. Additionally, the detection of the tuning role by soybean genotype in rhizosphere microbiome assembly provides a promising way for future breeding programs to integrate host traits participating in beneficial microbiota assembly.
Highlights
Plants have evolved intimate interactions with soil microbes for a range of beneficial functions including nutrient acquisition, pathogen resistance and stress tolerance
The rhizosphere is an interface between plant root and soil characterized by a dynamic microbial community with intensive microbe-microbe and plant-microbe communication mediated by plant molecular signals, especially secondary metabolites [7]
Despite the predominant dependency of the soybean rhizosphere microbiome assembly on soil type, we found that the impacts of soil types on rhizosphere microbe composition was smaller in comparison to corresponding impacts on indigenous soil microbial community
Summary
Plants have evolved intimate interactions with soil microbes for a range of beneficial functions including nutrient acquisition, pathogen resistance and stress tolerance. Further understanding of this system is a promising way to advance sustainable agriculture by exploiting the versatile benefits offered by the plant microbiome. The rhizosphere is the interface between plant and soil, and functions as the first step of plant defense and root microbiome recruitment It features a specialized microbial community, intensive microbe-plant and microbe-microbe interactions, and complex signal communication. The rhizosphere is an interface between plant root and soil characterized by a dynamic microbial community with intensive microbe-microbe and plant-microbe communication mediated by plant molecular signals, especially secondary metabolites [7]. Understanding the major factors that shape the rhizosphere microbiome assembly and the mechanisms of mutual adaptation between microbes and plants in response to changing environmental conditions will help to identify potential targets for future crop breeding and management
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have