Abstract

Soil structural degradation and water erosion processes were observed even in no-tillage schemes in the Pampas region. Within these conservation systems, agrochemical application per hectare is one of the highest globally. Thus, this entails a serious risk of water contamination. The objectives of this study were to (1) test the hypothesis that the hydrological dynamics and sediment concentration related to surface runoff were conditioned by soil structure regardless of the presence of maize (Zea mays L.) crop residue and (2) assess the incidence of maize crop residue on glyphosate and aminomethylphosphonic acid (AMPA) concentration in runoff. The soil under study corresponded to Arroyo Dulce Series (Typic Argiudoll silty loam soil). Rain simulations were performed in the laboratory on undisturbed soil samples. Total runoff and infiltration rate were similar between treatments with C(+) and without C(-) maize crop residues (C(+) 1381.40mL and 14.27mm h-1, C(-): 1529.70mL and 21.67mm h-1). The C(-) treatments showed a higher sediment concentration than C(+) (1.58 and 0.42g 100mL-1, respectively). Glyphosate and AMPA average values in runoff were 15.9 and 33.9µg L-1. High variability of the hydro-physical properties and occurrence of soil structure, particularly platy ones, were detected. The hydrological variables were conditioned mainly by the occurrence of platy structures regardless of crop residue presence. Glyphosate concentration was increased in the first runoff event by the presence of corn residues, while AMPA concentrations were higher in the second runoff event in both residue treatments. In this study, maize residue on the soil surface protected the soil from sediment detachment but did not change runoff or infiltration. Thus, the implementation of agricultural management practices that promote vegetative residue cover has shown positive results to erosion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.