Abstract
Analysis of plant functional traits and their phylogenetic relationships has shed light on the processes structuring the occurrence patterns of angiosperm taxa across environmental gradients. In montane tropical forests, angiosperms coexist with diverse communities of terrestrial ferns, with distinct evolutionary histories, leaf morphology, and reproductive systems. Here we examined the functional traits, functional dispersion, and phylogenetic diversity of ferns across a well-described gradient of moisture and soil nutrient availability in a premontane tropical rainforest in western Panama. We measured 15 functional traits from 33 terrestrial fern species occurring in 12 one-ha plots. We applied RLQ and fourth-corner analyses to assess relationships between trait and environmental variables and used beta regression to evaluate how functional dispersion responds to environmental factors. In addition, we analyzed trait distributions with respect to fern phylogeny. We found that functional composition was predicted by soil variables and dry season rainfall. Leaf phosphorus (P) increased and leaf carbon (C) to nitrogen (N) ratio decreased with increasing soil total N:P ratio. Functional dispersion decreased with increasing soil total N:P in wet sites and with increasing manganese in dry sites, suggesting that low soil fertility and dry season moisture stress both tend to reduce functional diversity. Traits exhibited phylogenetic clustering primarily at deep nodes associated with tree versus herbaceous fern clades. Our results indicate that environmental filtering of functional traits affects ferns in a similar way to angiosperms and highlight the association of the early tree fern clade with low fertility soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.