Abstract

Soil erosion and its spatial and temporal variabilities are rarely placed in the context of soil production and soil depth. This study examines the question of sustainable soil erosion and soil loss in a conservatively managed grassland catchment in South East Australia in what at first appears to be a catchment with a tolerable soil loss. Catchment erosion rates are determined using the environmental tracer 137Cs. A thorough examination of the accuracy and reliability of this method is conducted across a number of spatial scales and years providing confidence in the method and results. Soil depth is measured across the study catchment providing the first bedrock map of a basalt derived soil catchment. Both soil erosion and soil depth are topographically assessed using a high resolution digital elevation model. Results show that soil depth was strongly correlated with elevation and also wetness indices indicating a strong relationship with soil moisture in soil production. Interestingly bedrock topography was decoupled from surface topography. Erosion rates using the 137Cs method and calibrated against independent field data produced a maximum erosion rate of between 0.8 and 2.9tha−1yr−1 using two different modelling approaches. Even though the erosion rates are low, given a mean soil depth of 0.44m for the catchment this suggests that soil is being lost at rates greater than production. This highlights the significance of assessing erosion loss in the context of overall soil depth and production rates and that even in areas with what appears to be low soil loss rates, the loss can be higher than production. The findings provide a rationale to examine soil erosion in the context of whole catchment processes, not simply soil loss in isolation to other hillslope and catchment data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.