Abstract
Li, X. H., Han, X. Z., Li, H. B., Song, C., Yan, J. and Liang, Y. 2012. Soil chemical and biological properties affected by 21-year application of composted manure with chemical fertilizers in a Chinese Mollisol. Can. J. Soil Sci. 92: 419–428. The effects of 21-yr of application of chemical fertilizers, composted pig manure (CPM) alone, and chemical fertilizers combined with compost on soil chemical and biological properties were investigated. Soil samples (0–20cm) were collected from a long-term fertilization experiment under corn (Zea mays L.) production in 2006, prior to seeding, at the corn tasseling stage and following harvest. Fertilizer treatments were: no fertilizer (CK), nitrogen fertilizer alone (N), N + phosphorus (NP), N + P + potassium (NPK), CPM, N + CPM, N + P + CPM (NP + CPM), and N + P + K + CPM (NPK + CPM). Long-term application of N alone resulted in a reduction of soil pH by 0.38 units and reduced the available P concentration compared with CK. An increase in soil pH was seen with CPM alone and NPK + CPM. Both fertilizers sources, singly and combined, increased the total N and available N concentrations. Total P and total K concentrations were greatest with the NPK + CPM treatment. All fertilizer treatments increased the soil organic carbon (SOC), light fraction organic carbon (LFOC) and microbial biomass carbon (MBC) concentrations significantly (P < 0.05) at the tasseling stage. The NPK + CPM treatment showed the greatest increase in SOC (12%), LFOC (78%) and MBC (44%) concentrations, compared with CK. Soil enzyme activities (invertase, urease, acid and alkaline phosphatases) tended to be greater at tasseling than other sampling dates, with highest enzyme activities in the NPK + CPM treatments. These findings suggest that a long-term application of CPM combined with NPK is an efficient strategy to maintain or increase soil quality in Mollisols for sustainable agriculture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.