Abstract
We studied the effects of long term conservation tillage (CT) versus traditional tillage (TT) on soil biological status of a semi-arid sandy clay loam soil (Xerofluvent). The study was conducted in a wheat ( Triticum aestivum, L.)–sunflower ( Helianthus annuus, L.) crop rotation established in 1991 under rainfed conditions in SW Spain. A fodder pea ( Pisum arvense, L.) crop was introduced in the rotation in 2005. Soil biological status was evaluated by measuring the microbial biomass carbon (MBC) and some enzyme activities (dehydrogenase, alkaline phosphatase, β-glucosidase and protease) in autumn of 2004 and in summer of 2005, before and after the fodder pea crop, respectively. Soil analyses were performed in samples collected at three depths (0–5, 5–10 and 10–25 cm). In general and in both samplings, increases in the organic matter content, MBC and enzymatic activities were found in the more superficial layers of soil under CT than under TT. Values of MBC were lower in summer, whereas values of enzyme activities were similar in both samplings. Biological properties showed a pronounced decrease with increasing soil depth. Statistical differences in biochemical properties between soils under the different tillage were not found in the deeper layer (10–25 cm). Enzymatic activities, MBC and organic matter (water-soluble carbon (WSC) and soil organic carbon (SOC) contents) were strongly correlated ( p < 0.01). Conservation tillage improved the quality of soil in the superficial layer by enhancing its organic matter content and, especially, its biological status, as reflected in the values of stratification ratios for MBC and enzymatic activities.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have