Abstract
Lateral roots are crucial for the plasticity of root responses to environmental conditions in soil. The bacterivorous microfauna has been shown to increase root branching and to foster auxin producing soil bacteria. However, information on modifications of plant internal auxin content by soil bacteria and bacterivores is missing. Therefore, the effects of a rhizosphere bacterial community and a common soil amoeba (Acanthamoeba castellanii) on root branching and on auxin (indole-3-acetic acid) metabolism in Lepidium sativum and Arabidopsis thaliana were investigated. In a first experimental series, bacteria increased conjugated auxin concentrations in L. sativum shoots, but did not alter free bioactive auxin content nor root branching. In contrast, in presence of soil bacteria plus amoebae free auxin concentrations in shoots and root branching increased, demonstrating that effects of bacteria on auxin metabolism in plants were strongly modified by the bacterivorous amoebae. In a second experiment, A. thaliana reporter plants for auxin (DR5) and cytokinin (ARR5) responded similarly with increased root branching in the presence of amoebae. Surprisingly, in reporter plants cytokinin but not auxin responses were detectable, accompanied by higher soil nitrate concentrations in the presence of amoebae. Likely, increased nitrate concentrations in the rhizosphere led to an accumulation of cytokinin and interactions with free auxin in plants and finally to increased root growth in the presence of amoebae. Altogether, the results show that mutual control mechanisms exist between plant hormone metabolism and microbial signalling, and that effects on hormonal concentrations of plants by free-living bacteria are strongly influenced by bacterial grazers like amoebae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.