Abstract

Tropical inselbergs are isolated rock outcrops with a special type of vegetation surrounded by rain forest. They are exposed to a harsh climate (alternation of heavy rain and severe drought) and provide few nutrients for plant growth. The aim of our study was to investigate a possible correlation between primary plant succession, size and diversity of soil arthropods. The study site was the Nouragues inselberg, in French Guiana (South America). Nine soil samples (three samples in each vegetation type) were taken for the study of soil arthropod communities and their food habits in three habitat types: Pitcairnia geyskesi (Bromeliaceae), Clusia minor (Clusiaceae) and Myrcia saxatilis (Myrtaceae), which represent three stages in a primary plant succession on this inselberg. Soil arthropods were classified into morphospecies under the dissecting microscope and their food habits were characterized by examining their gut contents under the light microscope. A variation in food habits was observed, cyanobacteria being found in arthropod guts only during the Pitcairnia stage, and were replaced by plant material at the Myrcia stage. Carnivory was prominent in oribatid mites, contrary to temperate records. All our samples contained large numbers of microarthropods, principally mites and collembolans. At the Myrcia stage arthropod density was significantly higher than at the two other stages. Macroinvertebrates are present only at late and intermediate successional stages. The number of macropredators increased by a factor of 10 in species richness and 100 in abundance along the succession. These results suggest that abundance and diversity of soil arthropods increased throughout the plant succession and show the importance of organic matter as a factor which can explain the observed phenomenon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.