Abstract

The hydraulic resistivity ofVicia faba L. roots grown in soil was estimated from steady state measurements of transpiration rate and leaf and soil water potentials. Root and stem axial resistivities, estimated from xylem vessel radii, were negligible. Root radial resistivity was estimated to be 1.3×1012 sm−1. This root radial resistivity value was used to estimate, root resistance to water uptake for a field crop ofVicia faba. Previously published results were used for root distribution and soil water contents at the drained upper limit (DUL) and the lower limit (LL) of extractable soil water. Soil resistance to water uptake was estimated from single root theory using the steady rate solution. At the DUL, root resistance was about 105 times greater than soil resistance. At the LL, soil resistance exceeded root resistance for depths less than 0.3 m, but for depths greater than this soil resistance was smaller than root resistance. Estimates of possible uptake rates at given leaf water potentials indicated that overall soil resistance had a negligible influence upon uptake, even at the LL. The reliability of this result is examined in detail. It is concluded that over the complete range of extractable soil water contents soil resistanceper se would not have limited water use by this crop. This conclusion may also be valid for a wide range of soil and crop combinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.