Abstract

Soil organic matter (SOM) is the principal aggregating agent for soil aggregation and also the main adsorbent for organochlorine pesticides (OCPs) such as dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH), which may thereby affect OCP distribution in soils subjected to different land use types. However, the potential effects of land use on SOM and OCP distribution patterns in soil aggregates are not well understood. In this study, soils from farmlands and barelands in the Danjiangkou Reservoir area were analyzed to determine the influence of land use on OCP distribution and composition in different aggregate fractions (>3, 1–3, 0.25–1, and <0.25 mm). The results showed that the levels of ∑DDTs ranged from 9.01 to 27.48 with a mean of 14.40 ng g−1, and ∑HCHs ranged from 2.06 to 4.66 with a mean of 3.19 ng g−1 in farmland soils. In comparison, bareland soils were less contaminated, with total DDTs and HCHs fell in the range of 0.75–5.01 ng g−1 and not detected (n.d.)-1.40 ng g−1 respectively. In regard to the distribution patterns in soil aggregates, the residual levels of ∑DDTs and ∑HCHs tended to a certain degree to enrich in microaggregates (<0.25 mm) relative to bulk soils. A further analysis revealed that the enrichment of ∑DDTs and ∑HCHs in microaggregates were mainly attributed to the accumulation of p,p'-DDE and β-HCH. Moreover, SOM was found also enriched in microaggregates. The enrichment of SOM was significantly and positively correlated with these of ∑DDTs, ∑HCHs, and the dominant metabolites (i.e., DDE and β-HCH) in both land use types. Such results indicated that the variations in behavior of OCPs could be linked to the processes of soil aggregate turnover. These findings may help to enrich the theory of soil OCPs sequestration and establish targeted strategies to mitigate their health risks in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call