Abstract

V-type nerve agents are among the most toxic organophosphorus chemical warfare agents, and they are under strict regulation and supervision by the OPCW (Organization for the Prohibition of Chemical Weapons). The V-type class of materials refers to a potentially large number of analogues and isomers. In order to expose instances of unfulfillment of the OPCW treaty, it is essential to have the ability to detect and identify "unknown" analogues of this family, even in the absence of an analytical standard. This work demonstrates a new automated tool for the detection and identification of V-type analogues, using high-resolution-accurate-mass LC-MS analysis, followed by "Compound Discoverer" software data processing. This software, originally developed for metabolism and metabolomics screening, is used here to automatically detect various V-type analogues by picking peaks and comparing them to "in-silico" calculated modifications made on a predefined basic V-backbone structure (according to the OPCW definitions for V-type agents). Subsequently, a complete structural elucidation for the proposed molecular formula is obtained by MS/MS data analysis of the suspected component, for both the V-type analogue (using ESI(+) analysis) as well as its hydrolysis product (using ESI(-) analysis) for a better elucidation of the phosphonate "head" structure. This method was found to be useful for the detection and identification of several "unknown" analogues, at low ng/mL levels in soil extracts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.