Abstract
AbstractProcess identification for composting of tobacco solid waste in an aerobic, adiabatic batch reactor was carried out using neural network-based models which utilized the nonlinear finite impulse response and nonlinear autoregressive model with exogenous inputs identification methods. Two soft sensors were developed for the estimation of conversion. The neural networks were trained by the adaptive gradient method using cascade learning. The developed models showed that the neural networks could be applied as intelligent software sensors giving a possibility of continuous process monitoring. The models have a potential to be used for inferential control of composting process in batch reactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.